|
|||||||||||||||||||||||||
Homepage https://people.ucas.ac.cn/~0042225?language=en
Education and Appointments: 2001-2005 : (B.S.), Department of Marine Geology, Tongji University, China 2005-2010 : (Ph.D.), Department of Earth Sciences, Nanjing University, China 2007-2009 : (Joint Ph.D.), Institute of Geophysics, ETH-Zurich, Switzerland 2010-2012 : (PostDoc), FAST Laboratory, CNRS & University of Paris Sud XI, France 2012-2015 : (Research A./Prof.), Institute of Geology, Chinese Academy of Geological Sciences, China 2015-2020 : (Research Prof.), University of Chinese Academy of Sciences, China 2020-Now : (Tenured Prof.), University of Chinese Academy of Sciences, China
Research Interests: Research direction : Computational Geodynamics Key words : (1) Numerical methods : numerical modeling, rheology, finite difference method, finite element method, boundary element method (2) Subduction dynamics : subduction initiation, subduction mode selection, fluid-melt activity, magmatism, seismic anisotropy, western Pacific subduction zones (3) Continental collision : continental deep subduction, ultra-high pressure metamorphism and exhumation, lithosphere delamination, lateral extrusion/escape, Tibetan plateau, Tethys system (4) Earth system dynamics : deep Earth process, material circulation, energy exchange, deep water cycling, carbon cycling, surface response, environmental evolution (5) Planetary dynamics : continental formation, lithospheric evolution, beyond plate tectonics, early Earth dynamics, planetary evolution
Supported Projects: 2023-2027 : NSFC - National Science Fund for Distinguished Young Scholars (42225403, PI) 2022-2027 : MOST - National Key Research and Development Program Subject (2022YFF0801001, PI) 2022-2025 : UCAS - Innovation Group of Outstanding Young Scholars (E2ET0410X2, PI) 2020-2024 : CAS - Strategic Priority Research Program Subject (XDB42020202, PI) 2019-2022 : NSFC - Key Program (91855208, PI) 2018-2021 : NSFC - General Program (41774108, PI) 2017-2019 : NSFC - National Science Fund for Outstanding Young Scholars (41622404, PI) 2017-2018 : PetroChina - Foreland Basin Program Subject (2016B-0501, PI) 2016-2021 : CAS - Strategic Priority Research Program Subject (XDB18020104, PI) 2014-2016 : NSFC - Young Scholar Program (41304071, PI)
Selected Publication: ( * Corresponding author ) --------------------(2025-2021)->>>>>>>>>> Zhong X.Y., Li Z.H.*, (2023). Compression at strike-slip fault is a favorable condition for subduction initiation. Geophysical Research Letters, 50, e2022GL102171. <https://doi.org/10.1029/2022GL102171> Fu H.Y., Li Z.H.*, Chen L., (2022). Continental mid-lithosphere discontinuity: a water collector during craton evolution. Geophysical Research Letters, 49, e2022GL101569. <https://doi.org/10.1029/2022GL101569> Li Z.H.*, Liao J., Liu L.J., Faccenda M., (2022). Editorial: Subduction and Collision Dynamics of Tectonic Plates. Frontiers in Earth Science, 10, 1023604. <https://doi.org/10.3389/feart.2022.1023604> Wang Y., Zhang L.F.*, Li Z.H.*, (2022). Metamorphic densification can account for the missing felsic crust of the Greater Indian continent. Communications Earth & Environment, 3, 166. <https://doi.org/10.1038/s43247-022-00493-8> Li Q., Li Z.H.*, Zhong X.Y., (2022). Overriding lithospheric strength affects continental collisional mode selection and subduction transference: Implications for Greater India-Asia convergent system. Frontiers in Earth Science, 10, 919174. <https://doi.org/10.3389/feart.2022.919174> Cui Q.H., Li Z.H.*, (2022). Along-strike variation of convergence rate and pre-existing weakness contribute to Indian slab tearing beneath Tibetan Plateau. Geophysical Research Letters, 49, e2022GL098019. <https://doi.org/10.1029/2022GL098019> Zhong X.Y., Li Z.H.*, (2022). Wedge-shaped southern Indian continental margin without proper weakness hinders subduction initiation. Geochemistry Geophysics Geosystems, 23, e2021GC009998. <https://doi.org/10.1029/2021GC009998> Zhong X.Y., Li Z.H.*, (2022). Formation of metamorphic soles underlying ophiolites during subduction initiation: A systematic numerical study. Journal of Geophysical Research: Solid Earth, 127, e2021JB023431. <https://doi.org/10.1029/2021JB023431> Zhang Q.C.*, Li Z.H.*, Wu Z.H., Chen X.H., Zhang J.E., Yang Y., (2022). Subduction initiation of the western Proto-Tethys Ocean: New evidence from the Cambrian intra-oceanic forearc ophiolitic mélange in the western Kunlun Orogen, NW Tibetan Plateau. Geological Society of America Bulletin, 134, 145-159. <https://doi.org/10.1130/B35922.1> Li Z.H.*, (2022). Integrated thermodynamic and thermomechanical numerical modeling: A useful method for studying deep Earth water and carbon cycling. Geosystems and Geoenvironment, 1, 100002. <https://doi.org/10.1016/j.geogeo.2021.09.002> Cui Q.H., Li Z.H.*, Liu M., (2021). Crustal thickening versus lateral extrusion during India-Asia continental collision: 3-D thermo-mechanical modeling. Tectonophysics, 818, 229081. <https://doi.org/10.1016/j.tecto.2021.229081> Shi Y.N., Li Z.H.*, Chen L., Morgan J.*, (2021). Connection between a subcontinental plume and the mid-lithospheric discontinuity leads to fast and intense craton lithospheric thinning. Tectonics, 40, e2021TC006711. <https://doi.org/10.1029/2021TC006711> Zhong X.Y., Li Z.H.*, (2021). Subduction initiation at passive continental margins: A review based on numerical studies. Solid Earth Sciences, 6, 249-267. <https://doi.org/10.1016/j.sesci.2021.06.001> Pei X., Li Z.H.*, Shi Y.L.*, (2021). Formation mechanism of arcuate tectonic structures around northeast Tibetan plateau: Insight from 3‐D numerical modeling. Terra Nova, 33, 345-355. <https://doi.org/10.1111/ter.12519> Huangfu P.P., Li Z.H.*, Zhang K.J., Fan W.M., Zhao J.M., Shi Y.L., (2021). India-Tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan. Geophysical Research Letters, 48, e2021GL094561. <https://doi.org/10.1029/2021GL094561> Yang S.T., Li Z.H.*, Wan B., Chen L., Kaus B., (2021). Subduction‐induced back‐arc extension versus far‐field stretching: Contrasting modes for continental marginal break‐up. Geochemistry Geophysics Geosystems, 22, e2020GC009416. <https://doi.org/10.1029/2020GC009416> Li Z.H.*, Cui Q.H., Zhong X.Y., Liu M.Q., Wang Y., Huangfu P.P., (2021). Numerical modeling of continental dynamics: Questions, progress and perspectives. Acta Geologica Sinica, 95, 238-258. <https://doi.org/10.19762/j.cnki.dizhixuebao.2020276> --------------------(2020-2016)->>>>>>>>>> Li Z.H.*, (2020). Flat subduction versus big mantle wedge: contrasting modes for deep hydration and overriding craton modification. Journal of Geophysical Research: Solid Earth, 125, e2020JB020018. <https://doi.org/10.1029/2020JB020018> Zhong X.Y., Li Z.H.*, (2020). Subduction initiation during collision-induced subduction transference: Numerical modeling and implications for the Tethyan evolution. Journal of Geophysical Research: Solid Earth, 125, e2019JB019288. <https://doi.org/10.1029/2019JB019288> Zhou X., Li Z.H.*, Gerya T., Stern R., (2020). Lateral propagation-induced subduction initiation at passive continental margins controlled by pre-existing lithospheric weakness. Science Advances, 6, eaaz1048. <https://doi.org/10.1126/sciadv.aaz1048> Shi Y.N., Niu F.L., Li Z.H.*, Huangfu P.P., (2020). Craton destruction links to the interaction between subduction and mid-lithospheric discontinuity: Implications for the eastern North China Craton. Gondwana Research, 83, 49-62. <https://doi.org/10.1016/j.gr.2020.01.016> Li Z.H.*, Yang S.T., Liu M.Q., Huangfu P.P., (2019). Aqueous fluid activity and its effects in the subduction zones: A systematic numerical modeling study. Earth Science, 44, 3984-3992. <https://doi.org/10.3799/dqkx.2019.232> Zhong X.Y., Li Z.H.*, (2019). Forced subduction initiation at passive continental margins: velocity‐driven versus stress‐driven. Geophysical Research Letters, 46, 11054-11064. <https://doi.org/10.1029/2019GL084022> Lei T., Li Z.H.*, Liu M.*, (2019). Removing mantle lithosphere under orogens: delamination versus convective thinning. Geophysical Journal International, 219, 877-896. <https://doi.org/10.1093/gji/ggz329> Zhou X., Xu Z.Q., Li Z.H.*, Huangfu P.P., Zhang J.J., (2019). Dynamics of subducting plate in the upper mantle: numerical modeling. Chinese Journal of Geophysics, 62, 2455-2465. <https://doi.org/10.6038/cjg2019M0152> Li Z.H.*, Gerya T., Connolly J., (2019). Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 196, 102874. <https://doi.org/10.1016/j.earscirev.2019.05.018> Huangfu P.P., Li Z.H.*, Fan W.M., Zhang K.J., Shi Y.L., (2019). Continental lithospheric-scale subduction versus crustal-scale underthrusting in the collision zone: Numerical modeling. Tectonophysics, 757, 68-87. <https://doi.org/10.1016/j.tecto.2019.03.007> Yang S.H., Li Z.H.*, (2018). A numerical calculation approach based on FEM for long-term deformation of lithosphere. Journal of Geomechanics, 24, 768-775. <https://doi.org/10.12090/j.issn.1006-6616.2018.24.06.079> Huangfu P.P., Li Z.H.*, Gerya T., Fan W.M., Zhang K.J., Zhang H., Shi Y.L., (2018). Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan plateau. Nature Communications, 9, 3780. <https://doi.org/10.1038/s41467-018-06233-x> Liu M.Q., Li Z.H.*, (2018). Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling. Science China: Earth Sciences, 61, 823-852. <https://doi.org/10.1007/s11430-017-9184-x> Zhou X., Li Z.H.*, Gerya T., Stern R., Xu Z.Q., Zhang J.J., (2018). Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages. Geology, 46, 607-610. <https://doi.org/10.1130/G40154.1> Shi Y.N., Wei D.P.*, Li Z.H.*, Liu M.Q., Liu M.X., (2018). Subduction mode selection during slab and mantle transition zone interaction: Numerical modeling. Pure and Applied Geophysics, 175, 529-548. <https://doi.org/10.1007/s00024-017-1762-0> Yang S.H., Li Z.H.*, Gerya T., Xu Z.Q., Shi Y.L., (2018). Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet. Tectonophysics, 746, 212-228. <https://doi.org/10.1016/j.tecto.2017.07.018> Liu M.Q., Li Z.H.*, Yang S.H.*, (2017). Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones. Journal of Asian Earth Sciences, 145, 16-36. <https://doi.org/10.1016/j.jseaes.2017.02.036> Yang S.H., Xu Z.Q., Li Z.H.*, Shi Y.L., (2017). Constraint of impact craters on ice thickness on the Europa. Chinese Journal of Geophysics, 60, 935-940. <https://doi.org/10.6038/cjg20170308> Li Z.H.*, Liu M., Gerya T., (2016). Lithosphere delamination in continental collisional orogens: A systematic numerical study. Journal of Geophysical Research: Solid Earth, 121, 5186-5211. <https://doi.org/10.1002/2016JB013106> Li Z.H.*, Shi Y.L., (2016). Constraints of 3-D plate geometry on the dynamics of continental deep subduction. Chinese Journal of Geophysics, 59, 2806-2817. <https://doi.org/10.6038/cjg20160808> Li Z.H.*, (2016). Applications of boundary-element method in computational geodynamics. Journal of University of Chinese Academy of Sciences, 33, 89-96. <http://html.rhhz.net/ZGKXYDXXB/20160114.htm> Peng M., Jiang M., Li Z.H.*, Xu Z.Q., Zhu L.P., Chan W., Chen Y.L., Wang Y.X., Yu C.Q., Lei J.S., Zhang L.S., Li Q.Q., Xu L.H., (2016). Complex Indian subduction style with slab fragmentation beneath the eastern Himalayan Syntaxis revealed by teleseismic P-wave tomography. Tectonophysics, 667, 77-86. <https://doi.org/10.1016/j.tecto.2015.11.012> --------------------(2015-2009)->>>>>>>>>> Li Z.H.*, Xu Z.Q., (2015). Dynamics of along-strike transition between oceanic subduction and continental collision: Effects of fluid-melt activity. Acta Petrologica Sinica, 31, 3524-3530. <http://html.rhhz.net/ysxb/20151202.htm> Li Z.H.*, Liu M.Q., Gerya T., (2015). Material transportation and fluid-melt activity in the subduction channel: numerical modeling. Science China: Earth Sciences, 58, 1251-1268. <https://doi.org/10.1007/s11430-015-5123-5> Li Z.H.*, Di Leo J., Ribe N., (2014). Subduction-induced mantle flow, finite strain and seismic anisotropy: Numerical modeling. Journal of Geophysical Research: Solid Earth, 119, 5052-5076. <https://doi.org/10.1002/2014JB010996> Li Z.H.*, (2014). A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Science China: Earth Sciences, 57, 47-69. <https://doi.org/10.1007/s11430-013-4696-0> Li Z.H.*, Xu Z.Q., Gerya T., Burg J.P., (2013). Collision of continental corner from 3-D numerical modeling. Earth and Planetary Science Letters, 380, 98-111. <https://doi.org/10.1016/j.epsl.2013.08.034> Li Z.H.*, Ribe N., (2012). Dynamics of free subduction from 3-D Boundary-Element modeling. Journal of Geophysical Research: Solid Earth, 117, B06408. <https://doi.org/10.1029/2012JB009165> Li Z.H.*, Xu Z.Q., Gerya T., (2012). Numerical geodynamic modeling of continental convergent margins. In: Earth Sciences, Ed. Imran Ahmad Dar, Pub. InTech, pp. 273-296. <https://doi.org/10.5772/26510> Li Z.H.*, Xu Z.Q., Gerya T., (2011). Flat versus steep subduction: contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth and Planetary Science Letters, 301, 65-77. <https://doi.org/10.1016/j.epsl.2010.10.014> Li Z.H.*, Gerya T., Burg J.P., (2010). Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modeling. Journal of Metamorphic Geology, 28, 227-247. <https://doi.org/10.1111/j.1525-1314.2009.00864.x> Li Z.H.*, Gerya T., (2009). Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. Journal of Geophysical Research: Solid Earth, 114, B09406. <https://doi.org/10.1029/2008JB005935>
|
|
]]>
|
]]>
|
]]>
|
|
|||||||||||
|
||||||||||||
]]>
|
|
|
|||||||||||
|
]]>
|
|
||||||||||||||||||||||||
Homepage http://people.ucas.ac.cn/~liuping?language=en
Education and Appointments: 2017.11-Present Associate Professor, University of Chinese Academy of Sciences 2011.8-2017.11 Assistant Professor, Graduate University of Chinese Academy of Sciences 2008.7-2011.8 PostDoc, Institute of Geology and Geophysics Chinese Academy of Sciences 2005.9-2008.7 Ph. D., Institute of Geology and Geophysics Chinese Academy of Sciences 2002.9-2004.7 M. Sc, University of Bergen, Norway 2001.9-2005.7 M. Sc, Taiyuan University of Technology 1997.9-2001.7 B. Sc, Taiyuan University of Technology
Research Interests: Quaternary Geology, Magnetostratigraphy, Environmental magnetism, Rock magnetism.
Honors: Outstanding individual award, 2019, 2021
Supported Projects: Fundamental Research Funds for the Central Universities, (2022-2024), Magnetostratigraphic dating of the Pulu mammalian fauna in Nihewan Basin National Natural Science Foundation of China,(2020-2023), The chronostratigraphic classification of typical fluvio-lacustrine sequence in Nihewan Basin, North China National Natural Science Foundation of China,(2013-2016), Age of the Nihewan paleolake and its environmental significance, North China. National Natural Science Foundation of China,(2010-2012), Magnetostratigraphic dating of the Xiashagou Fauna in the Nihewan Basin, North China
Selected Publication: 1. Gao X.L.,Li J.H.,Liu P*. Characteristics analysis of magnetic fabric in Xiashagou section and the environmental changes of the Nihewan Lake. Quaternary Science Reviews, 2022, 193, 118-218 2. Liu P*., Qin H.F., Li S.H., Yuan B.Y. Magnetostratigraphic dating of the danangou and dongyaozitou mammalian faunas in the Nihewan Basin, North China. Quaternary Science Reviews, 2021, 257, 106855 3. Liu P.*, Yue, F., Liu, J.Q., Qin, H.F., Li, S.H., Zhao, X., Xu, Ji.W., Yuan, B.Y., Deng, C.L., Zhu, R.X. Magnetostratigraphic dating of the Shixia red sediments and implications for formation of Nihewan paleo-lake, North China. Quaternary Science Reviews, 2018, 193, 118-218 4. Liu, P.*, Wu, Z.J., Deng, C.L., Tong, H.W., Qin, H.F., Li, S.H., Yuan, B.Y., Zhu, R.X. Magnetostratigraphic dating of the Shanshenmiaozui mammalian fauna in the Nihewan Basin, North China. Quaternary International, 2016, 400, 202-211 5. Liu P.*,Deng C.L., Li S.H., Cai S.H.,Yuan B.Y., Wei Q., Zhu R.X. Magnetostratigraphic dating of the Xiashagou Fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China. Quaternary Sciences, 2016, 36(5), 1176-1190 (in Chinese with English abstract) 6. Liu P.*, Deng C.L., Li S.H., Cai S.H., Cheng H.J., Yuan B.Y., Wei Q., Zhu R.X. Magnetostratigraphic dating of the Xiashagou Fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315-316: 75-85. 7. Liu P.*, Deng C.L., Li S.H., Zhu R.X, Magnetostratigraphic dating of the Huojiadi Paleolithic Site in the Nihewan Basin, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298: 399-408. 8. Zuo T.W., Cheng H.J., Liu P., Xie F., Deng C.L. Magnetostratigraphic dating of the Houhou Paleolithic site in the Nihewan Basin, North China. Science China Earth Science, 2011, 54: 1643-1650, doi: 10.1007/s11430-011-4221-2 9. Liu P.*, Zhang S., Han J.M., Liu T.S. Paleomagnetic chronology of Quaternary stratigraphy of the Longdan section in Gansu Province of China. Quaternary Sciences, 2008, 28(5): 796-805. 10. Liu P.*,Jin C.S., Zhan S., Han J.M., Liu T.S. Magnetic fabric of Early Quaternary loess-paleosols of Longdan profile in Gansu Province and the reconstruction of the paleowind directions. Chinese Science Bulletin, 2008, 53(9): 1450-1452. 11. Liu P.*, Lovlie R., Magnetostratigraphic age of Pleistocene loess/paleosol sections at Kehe, Shanxi. Journal of Stratigraphy, 2007, 31(3): 240-246. 12. Zhang S., Liu P., Jin C.S., Han J.M., Qin X.G., Liu T.S. Geochemical characteristics of dust fall in Beijing on April 17, 2006, Marine Geology and Quaternary Geology, 2008, 28(3): 35-42. 13. Zhang S., Heller F., Jin C.S., Liu P., Qin X.G., Liu T.S. Grain size distribution and magnetic characteristics of dust fall in Beijing on April 17, 2006, Quaternary Sciences, 2008, 28(2): 354-362 14. Liu T.S., Han J.M., Zhang D.E., Qin X.G., Zhang S., Jin C.S., Liu P., Jiang W.Y., Falling dust and deposits in Anthropogene-Ⅰ:Prelminary analyses of the dust fall in Beijing on April 16-17, 2006. Quaternary Sciences, 2006, 26(4): 628-633. |
|